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LElTER TO THE EDITOR 

Logarithmic voltage anomalies in random resistor networks 
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t Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 
02215, USA 
$ Department of Physics, Boston University, Boston, MA 02215, USA 

Received 8 June 1987 

Abstract. We investigate the behaviour of the maximum voltage drop across the bonds in 
a random resistor network above the percolation threshold. On the basis of numerical 
simulations on randomly diluted L x  L square lattice networks, we find that the average 
value of the maximum voltage, (V,,,( p; L)), exhibits a peak as a function of the bond 
concentration, p ,  which is located above the percolation threshold. This peak value appears 
to grow logarithmically with L, while the location of the peak appears to approach the 
percolation threshold very slowly as L increases. To help understand these results, we 
introduce the ‘bubble’ model, a quasi-one-dimensional structure in which the system length 
varies exponentially in the system width. This model is exactly soluble and a rather good 
description of percolation in systems of greater than one dimension can be obtained. 
Moreover, within the bubble model the peak value of the maximum voltage increases as 
In L, while the peak location approaches the percolation threshold as In(ln L)/ln L, in 
good agreement with our numerical results. 

Very recently, the behaviour of the random resistor network has been the focus of 
renewed attention [ 1-51. Part of the reason for this revival of interest stems from the 
fact that the distribution of voltage drops across the bonds in the network exhibits 
novel ‘multifractal’ aspects. This multifractality arises because there is no unique 
voltage (in a scaling sense) which controls the behaviour of all the moments of the 
voltage distribution. Consequently, many well established scaling ideas needed to be 
reformulated [l-61 to take account of this multiplicity of voltage scales inherent in 
such a distribution. 

Another reason for considering the voltage distribution is that it underlies a variety 
of fundamental physical processes on linear networks. For example, the second moment 
gives the conductance of a resistor network, the fourth moment gives the magnitude 
of resistance noise [2], while the negative voltage moments are relevant for understand- 
ing transport and hydrodynamic dispersion processes in flow through random tube 
networks [7]. Another very important application arises from the investigation of the 
maximum voltage drop in the network [%lo], as this governs the failure of a random 
fuse network, and this, in turn, has been invoked as a model for the breaking of 
disordered media. Recently, analytical arguments [9, 101 and numerical simulations 
[9] have been presented which suggest that the configurational average of this maximal 
voltage drop, (V,,, , ,(p; L) ) ,  increases as In L, under conditions of fixed potential 
gradient, where L is the linear dimension of the system. This result appears to hold 
for any value of the bond concentration p greater than the percolation threshold p c .  
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Santa Barbara, CA 93106, USA. 
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A striking implication of this basic result is that the breaking strength of a random 
network of fuses decreases as l / ln L. 

In this letter, we investigate the concentration and size dependence of ( Vmax( p ;  L ) )  
in greater detail. In addition to verifying the logarithmic behaviour found previously, 
we also find that for fixed L, ( Vmax( p ;  L ) )  is a non-monotonic function of p ,  exhibiting 
a peak at a value pp&(L), which is above the percolation threshold. As L +  CO, p p e a k (  L )  
does appear to approach the percolation threshold, although only very slowly. Physi- 
cally, this peak originates from two competing effects as p + p c  from above. On the 
one hand, the total current flow in the network is reduced (under conditions of fixed 
external potential) and this clearly reduces the current flow in each bond of the network. 
On the other hand, as p decreases, local ‘bottlenecks’ in the network are formed which 
funnel current on progressively larger length scales. This gives rise to a strong local 
enhancement of current flow. The competition between these two effects is the mechan- 
ism that leads to a peak in ( Vma,(p;  L ) )  for fixed L, which is above the percolation 
threshold. 

This non-monotonicity may also have interesting experimental ramifications for 
various types of breakdown processes, as a finite-sized random resistor network should 
be most susceptible to ‘burning out’ at ppeak(  L ) ,  which is above the percolation threshold. 
Such an effect has, in fact, been observed (but not reported previously) in a study of 
the conductivity of a random resistor-diode network [ll]. In the finite-size system 
studied, a burning point occured at p = 0.767, compared to a threshold value of 
pc = 0.578. At this burning point, solder connections for circuit elements within the 
bottleneck melted and these solder joints began to smoke. This behaviour was reproduc- 
ible both by randomly depleting the network to pass through the burning point, and 
then by rejoining connections in the reverse order that they were severed. Although 
the directionality constraint imposed by the diodes certainly enhances the bottleneck 
effect, similar breakdown behaviour can be anticipated to occur in suitably designed 
random resistor networks. 

To provide a simple physical picture and an analytical account for these results, 
we introduce the ‘bubble’ model, a simple but exactly soluble quasi-one-dimensional 
structure which exhibits features of the percolation transition for systems in greater 
than one dimension. On this model, it is possible to investigate the behaviour of 
( Vmax(p;  L ) ) ,  as well as a variety of related percolation properties, analytically. We 
find that for a fixed value of p ,  ( Vmax( p ;  L ) )  indeed increases as In L. More interestingly, 
for a fixed value of L, ( V m a x ( p ;  L ) )  has a peak as a function of p, whose position 
approaches the percolation threshold as ln(ln L)/ln L. While we cannot test the 
correctness of a double logarithm numerically, these predictions do provide a good 
account for our simulation results on random resistor networks on the square lattice. 

Let us begin by describing our numerical results. We studied randomly diluted 
L x L square-lattice resistor networks, in which the opposite edges of the network were 
connected to bus bars, with one bus bar at potential V = 0 and the other at V = L. The 
current flow problem was solved numerically by using the Fourier-accelerated conjugate 
gradient scheme, introduced by one of the authors [3]. We considered networks of 
linear dimension up to L= 128, for a range of p values between pc(  =;) and 1. For 
each value ofp,  we obtained (Vmax(p; L ) )  by averaging over 1000 spanning realisations 
for L =  8, 16 and 32, while for L =  64 and L =  128, averages were performed over 500 
and 200 spanning realisations, respectively. Since the p dependence is smooth, we 
could estimate the location of the peak, Ppeak(L), and its magnitude, Vpeak(L), fairly 
accurately and the results are shown in figures 1 and 2. Evidently, ppeak(L) is slowly 
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Figure 1. Numerical data for (Vmax(p; L)) as a function p for various values of L. The 
data for L = 8  (+), L =  16 (0), L = 3 2  (x ) ,  L = 6 4  (0), L= 128 (0 )  are shown. Error bars 
are within the data points. 
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Figure 2. ( a )  Estimated values of V,, , (L)  as a function of L. Error bars are within the 
data points for L i  128. ( b )  estimated values of ppeak (L) plotted as a function of 
In(ln L)/ln L. Error bars reflect the uncertainty in determining the location of ppeak(L). 
The data symbols are the same as  in figure 1. 

approaching p c  as L + 03, while Vpeak( L) is increasing with L at a rate which is consistent 
with logarithmic growth, if the curvature in the data for small values of L is interpreted 
as a finite-size effect. 

We now show how these peculiar results may be accounted for in terms of the 
'bubble' model. To define this model, consider a percolation problem on a rectangular 
lattice of length L and width w in which the vertical bonds are either present with 
probability p,  or absent with probability 1 - p ,  while the horizontal bonds are always 
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present. The resulting structure is effectively one dimensional as shown in figure 3. 
(This type of geometrical constraint has been invoked previously in order to develop 
exact renormalisation group recursion relations for percolation [ 121 and self-avoiding 
walks [13] in d = 1 + E  dimensions.) In treating current flow on the bubble model, 
each occcupied vertical bond will be assigned a unit resistance and all the horizontal 
bonds will be considered as having zero resistance. 

The nature of the percolation transition in the bubble model can be understood 
by considering the probability that a path spans the system. This probability is simply 
given by 

p'=[1-(1-p)"IL ( 1 )  

p' - exp[ - L exp( - p w ) ] .  ( 2 )  
This spanning probability sharply changes in value from 0 to 1 at a value p c  - In L/ w. 
Thus by choosing L-ew, one generates a model which has a fixed point, i.e. a 
percolation transition, at a value of p that lies strictly within the interval ( 0 , l )  as 
L+co. This non-trivial location of the transition arises because of the balancing 
influence of series and parallel paths in the asymptotic limit. Each bubble can be 
thought of as an effective bond which is present with probability pB = 1 - ( 1  - p ) " ,  a 
quantity which is exponentially close to unity as w + 00. Consequently, the spanning 
probability, p ' = p k ,  can be freely varied between 0 and 1,  by tuning the manner in 
which L scales with w. Owing to the one-dimensional nature of the model, all 
percolation properties can be obtained exactly. However, we will present these details 
elsewhere and concentrate instead on understanding the nature of the voltage anomalies 
through the study of the bubble model. 

For the ensuing discussion, it is convenient to choose L = 2", as this gives rise to 
a percolation threshold at p c  = f as L +  00. We will apply the results of this version of 
the bubble model in order to account for various features observed in our simulations 
of the square-lattice random resistor network. Parenthetically, it is noteworthy that 
percolation on the bubble model shares some features of percolation in a wedge [14] 
whose width grows logarithmically with the distance from the apex of the wedge. This 

and as L, w +. CO, this may be written approximately as 

Figure 3. Schematic picture of the bubble model. 
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logarithmic relation between the width and length is the minimal growth law needed 
in order to have a value of pc  strictly less than 1 .  

The behaviour of ( V , , , ( p ;  L ) )  as a function of p and L in the bubble model is 
governed by two factors: the average current flow and the width of the expected 
narrowest bottleneck. For obtaining the average current flow, note that the average 
resistance of the bubble model is simply equal to 

Here wi is the number of occupied bonds in the ith bubble, the prime on the summation 
denotes that it is taken only over spanning configurations ( w i > O  for all i ) ,  while 
pconfig = p , p 2  . . . p L  is the product of configurational probabilities for each bubble. Due 
to this product form, we may write 

where the average (w; ’ ) ’  again excludes the possibility that wi = 0. As w + CO, it is clear 
that, as long as the probability of finding a bubble width wi vanishes faster than linearly 
in wi as wi + 0, then (w; ’ ) ’  - ( wi)-’  and the latter quantity equals l l p w .  Thus we obtain 

1 L  R z - -  
P ’  PW 

or, conversely, the average conductance of the system is 

P W G - p ’ - .  
L 

The conductance initially rises very sharply from 0 within a narrow transition region 
near p c ,  where p ’  is rapidly increasing. However, once this rapid increase in p ’  has 
passed, G subsequently increases linearly with p .  

Now consider the nature of bottlenecks in the bubble model. For this purpose, we 
appeal to Coniglio’s theorem [ 151 ,  which states that ap‘ lap  equals the average number 
of singly connected bonds in the system. From (l) ,  we obtain 

wLq” p ‘  
( 1 - q ” )  4 

--- - 

where q = 1 - p .  Therefore at the fixed point (located at 4, when L = 2”)  we find 

Thus at p c ,  the bottlenecking effect is quite severe as there are w - In L singly connected 
bonds, on average. However, the effect of this extreme bottlenecking at the percolation 
threshold is more than compensated for by the vanishing of the total current flow at 
this point. 
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To locate the burning point, we therefore require the behaviour of the bottlenecks 
above the percolation threshold. A particularly relevant quantity to consider is the 
concentration dependence of the probability that the width of the narrowest bottleneck 
in the system is equal to unity, P l ( p ,  L). Questions of this nature have been studied 
previously through numerical simulations of percolation on the square lattice [ 161. 
From Coniglio's theorem, it is clear that P l ( p ;  L) is essentially equal to unity for 
p S p c ,  but that P l ( p ;  L )  will decrease some finite distance above p c ,  where the width 
of the narrowest bottleneck begins to grow, corresponding to the disappearance of 
singly connected bonds (figure 4). When this occurs, the total current flow in the 
network will split among the several bonds that comprise this narrowest bottleneck 
and the maximum single bond current flow, or equivalently, ( V,,,,,( p ;  L)), will decrease. 

By elementary arguments 

P1(p; L )  = 1 - ( 1 -- yS-')' 

For p < p c ,  p' = 0 leading to PI( p; L )  = 1 - O(exp( -exp( L ) ) ,  while for p = p c ,  one finds 
P l ( p ;  L )  = 1 -e-w - 1 - L-'. On the other hand, P l ( p ;  L) + 0, when the argument of 
the outer exponential in (8) is of the order of unity and this turns out to occur at a 
value of 

In(1n L) i - p c +  Wln W l  W )  - p c +  .( x) . 

For larger values of p, P l ( p ;  L )  is effectively equal to 0, corresponding to the width 
of the narrowest bottleneck being larger than 1. We therefore anticipate that ppeak( L) 
is essentially equal to 6. Although the location of p^ given by the bubble model should 
not be expected to be quantitatively correct, as the scaling behaviour of d p ' l a p  in the 
bubble model is logarithmic in L (7b) ,  while it is a power law in L for lattice systems, 
the numerical data are in surprisingly good agreement with the bubble model prediction 
(figure 2 ( b ) ) .  

1.00 

5 0.50 
cl' 

0 

0 0.2 0.6 1 .o 
P 

Figure 4. The dependence of P , ( p ,  L), the probability that the narrowest bottleneck has 
width unity, against p for the bubble model with w = 12 and L = 212. 
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We now estimate the magnitude of the peak in ( Vmax( p ;  L) ) .  Since the peak occurs 
at the largest value of p where a singly connected bond still exists, it is still true that 
G, Vmax(p;  L ) ,  and Z, where Z is the total current flowing through the network, must 
coincide [l]. Then using ( 6 ) ,  it immediately follows that 

Vpeak( L,  -ppeak(L)W 
- p c h  L (9a 1 

and this accords well with our data of figure 2 ( a ) .  
It is also worth mentioning that this result can be readily adapted to treat electrical 

breakdown properties in the case where each bond is a fuse which will break down if 
the voltage across it is greater than some specified value, say 1. Then the breaking 
point is simply equal to the inverse of Vma,(p; L) .  The case where singly connected 
bonds still exist is particularly simple, as Vmax(p;  L )  coincides with the conductance 
of the system. In general, however, the behaviour of Vmax(p;  L )  is dominated by a 
linear dependence on w for all values of p > p c .  Therefore the breaking potential of 
the system, V,, will scale as 

V h  1 

This result was obtained previously through a Lifshitz-type argument by Duxbury et 
a1 [ 9 ] .  

In conclusion, we have studied the behaviour of the average value of the maximum 
voltage drop, ( Vmax(p; L)) ,  across the bonds in a random resistor network above the 
percolation threshold. On the basis of numerical simulations, ( Vmax( p ;  L ) )  exhibits a 
peak as a function of the bond concentration, whose value appears to increase 
logarithmically with the system size L. The location of the peak is above the percolation 
threshold for finite-size systems but appears to approach the percolation threshold at 
a rate which is consistent with the behaviour ln(1n L)/ln L, as L increases. These 
unsual features can be accounted for within the bubble model. Although this model 
should not be taken literally as a description of percolation on lattice systems, it has 
the advantage of great simplicity, while still providing a very useful intuitive account 
of various geometrical properties of random systems above the percolation threshold. 
Furthermore, the bubble model predictions for the behaviour of ( Vmax( p; L ) )  are borne 
out rather nicely by numerical simulations of the random resistor network on the 
square lattice. 
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